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This paper is concerned with small amplitude vortical and entropic unsteady motions 
imposed on steady potential flows. Its main purpose is to show that, even in this 
unsteady compressible and vortical flow, the perturbations in pressure p' and 
velocity u can be written as p' = -poDo$/Dt  and u = V$+u(I )  respeckively, 
where D,/Dt is the convective derivative relative to the mean potential flow, u ( I )  is 
a known function of the imposed upstream disturbance and $ is a solution to the 
linear inhomogeneous wave equation 

with a dipole source term po l  V .p,u(I) whose strength p o d 1 )  is a known function of 
the imposed upstream distortion field. (Here co and p o  denote the speed of sound and 
density of the background potential flow.) This equation is used to extend Hunt's (1973) 
generalization of the ' rapid-distortion' theory of turbulence developed by Batchelor 
& Proudman (1954) and Ribner & Tucker (1953). These theories predict changes 
occurring in weakly turbulent flows that are distorted (by solid obstacles and other 
external influences) in a time short relative to the Lagrangian integral scale. 

The theory is applied to the unsteady supersonic flow around a corner and a closed- 
form analytical solution is obtained. Detailed calculations are carried out to show 
how the expansion at the corner 'affects a turbulent incident stream. 

1. Introduction 
Much of both aerodynamics and hydrodynamics is concerned with high Reynolds 

number flows produced by solid bodies moving through a fluid at  rest or, equivalently, 
with stationary bodies or obstacles embedded in nearly inviscid flows that have 
constant velocity and physical properties far upstream. Major portions of these 
flows have velocity fields that can be expressed as the gradient of a scalar potential. 

There have also been many studies of the alterations that are produced when small 
amplitude (steady or unsteady) upstream distortions are imposed on such flows. 
Analyses of this type usually fall into two groups. One of these is concerned with 
airfoils and other bodies that have a t  least one small transverse dimension and con- 
sequently cause only small departures from the uniform upstream flow. The motion 
produced by the imposed upstream distortion is then effectively decoupled from .the 
steady potential flow about the body and can therefore be calculated as if the body 
had zero thickness and angle of attack (which for an airfoil could correspond to a 
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flat plate a t  zero angle of attack and with the same projected area as the airfoil). The 
entire flow arising from the interaction between the imposed distortion and the 
obstacle is then the result of a blocking effect caused by the vanishing of the normal 
velocity a t  the surface of the body. Such flows are described by equations with constant 
coefficients and solutions can therefore be found for a wide variety of conditions. 
There is no need to assume that the flow is incompressible or that  the body is two- 
dimensional. Studies of these flows are relevant to the prediction of gust loading on 
airfoils and other aerodynamic surfaces and even to aeroacoustic investigations 
concerned with aircraft engine-fan and compressor noise. The first solution to this type 
of problem was given by Sears ( 194 1 ). 

The second class of problems is concerned with flows about blunt bodies and other 
obstacles that  produce a non-negligible disturbanco to  the upstream flow. Such 
problems lead to  equations with variable coeflicients unless the flow is assumed to be 
incompressible and all investigations of these flows have therefore invoked this 
assumption. The first work on this category of flows is due to Lighthill (1956)’ who 
imposed an upstream vorticity field that was independent of time but varied in space. 
The most general upstream vorticity field consistent with the assumption that i t  
represents a small disturbance of a uniform flow has recently been treated by Hunt 
(1973), who used his results to generalize the Ribner-Tucker (1953) and Batchelor- 
Proudman (1954) ‘rapid-distortion ’ theory of turbulence. The extended theory 
accounts for non-uniform strains and solid-surface blocking effects. Hunt used his 
approach to analyse the turbulent flow about a two-dimensional circular cylinder. 

One purpose of the present paper is to develop a unified approach that can deal 
with both categories of flows alluded to above. To this end we consider the most 
general type of disturbance to  the uniform incident stream (which includes both 
entropy and vorticity disturbances) and we require neither that a transverse 
dimension of the body be small nor that the flow be incompressible. Another 
purpose of this paper is to use this approach to study a rather general class of flows 
that does not fall into either of the categories discussed above and which, to our 
knowledge, cannot be treated by any other method. 

The potential flow upstream of a three-dimensional obstacle or a non-lifting two- 
dimensional obstacle is uniform enough to ensure that the imposed distortion field 
will act like a small disturbance on a constant velocity mean flow. The character of 
such disturbances is well understood (Kov&sznay 1953). They can be decomposed 
into distinct acoustic-, vortical- and entropy-type modes, each of which can exist 
independently of the others. The vortical mode has a divergence-free velocity field 
and produces no pressure fluctuations. Since the entropy mode is also decoupled from 
the pressure fluctuations the latter can be produced only by the acoustic mode. But 
we are not concerned in this paper with the effect of incident acoustic fields and these 
are eliminated from the discussion. 

I n  $ 2  we consider the effect of the most general non-acoustic incident distortion 
field that can be imposed on the uniform upstream flow. It is then shown that the 
perturbation velocity u a t  any point x of the resulting unsteady compressible and 
vortical flow will consist of (i) a part u(Z) = U ( ~ ) ( X ,  t )  that  is a known function of the 
imposed upstream distortion field and the mean flow variables and (ii) a part Vq5 
that  is related to the pressure fluctuations p’ by p‘/po = - Do r$/Dt, where Do/Dt is the 
convective derivative based on the mean flow velocity, po = p0(x)  is the density of 
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the mean flow and t denotes the time'. The 'perturbation potential ' 4 can be found by 
solving the linear inhomogeneous wave equation 

1 
Do 1 V.(p0Cq5) = -V.p,u(') 
Dtcg Dt po Po 

with a dipole-type source term pol V .pou(I)  whose strength p o u ( I )  is a known function 
of the imposed upstream distortion field and the basic mean-flow variables. co = co(x) 
denotes the sound speed of the mean flow. 

The known portion u(I) of the perturbation velocity field is linearly related to  the 
imposed upstream distortion by a simple formula (equation (2.33) below) that is the 
sum of two terms. The first of these represents the effect of the imposed upstream 
vortical velocity field u, while the second represents the vortical velocity generated 
by the interaction between the imposed upstream entropy fluctuations and the steady 
potential flow. This formula may be the most important result of the paper. 

At upstream infinity po becomes constant and u(I) approaches the imposed vortical 
velocity field u,. Then since, as indicated above, the latter quantity has zero diver- 
gence, the source term in ( 1 . 1 )  will vanish a t  upstream infinity and the outgoing-wave 
solution $ will therefore approach zero in this region. But the portion p o d r )  of the 
momentum perturbation (which becomes equal to pa u, far upstream) is distorted by 
the steady potential flow as the latter convects it towards the body surface. This 
destroys the initial divergence-free property of po u ( I )  and thereby produces a non-zero 
source term which causes the solution 4 of (1.1) to be non-zero a t  finite distances 
from the obstacle. I n  this wty the distortion effect is able to produce a potential 
velocity field Vq5 with its attendant pressure fluctuations -poDoq5/Dt. If the mean 
flow were entirely uniform, i.e. if no distortion occurred, the imposed upstream 
vortical velocity and entropy fluctuation would, as indicated above, satisfy their 
governing equations without producing any pressure fluctuations. The latter can 
therefore be attributed to the distortion effect described above. 

But pressure fluctuations can also be produced by the boundary condition on the 
surface of the obstacle. For rigid bodies the normal component of u = u(I) + Vq5 must 
vanish on this surface and, since u(I) will in general not equal zero there, Vq5 will also 
be non-zero. Then q5 will not vanish in the flow and pressure fluctuations will again 
be produced. 

The effect of airfoils and other two-dimensional lifting surfaces is felt so far up- 
stream in subsonic flows that the imposed upstream disturbance field cannot be 
assumed to be the same as it would be in a uniform flow (Goldstein & Atassi 1976). 
However, an appropriate form for the upstream distortion field is deduced in $ 2 . 6  
and it is then shown that the theory described above will, with only slight modification, 
also apply to flows of this type. 

In  $ 3 we use (1.1) to study the unsteady compressible flow over a two-dimensional 
obstacle whose transverse dimensions are non-negligible. This flow does not fall into 
either of the categories described above. In  order to  emphasize the compressibility 
effects, we suppose that the flow is supersonic and, in order to treat a situation of a 
general type that is still simple enough to lead to closed-form solutions, we take the 
mean flow to  be a Prandtl-Meyer expansion around a corner. The wave equation (1.1) 
has variable coefficients for this flow and cannot be solved by separation of variables. 
However, we can, as a result of a rather remarkable set of circumstances, reduce it to 
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a fist-order linear partial differential equation by taking its Laplace transform. The 
latter equation is then solved in the usual way by the method of characteristics. 

I n  $ 4  we use the solution to  calculate the turbulence velocity correlations in the 
expansion fan a t  the leading edge of a wedge a t  a large angle of attack to  the mean 
flow. With the recent advances in laser-Doppler velocimetry i t  is now possible to 
measure such correlations in supersonic flows. The unsteady motion is assumed to 
result from a specified upstream turbulence field. The conditions under which the 
present model describes real turbulent flows are roughly those given by Hunt (1973) 
with some relatively minor restrictions on the Mach numbers, which are discussed 
below. 

It is frequently argued that there should not be any substantial differences between 
the turbulence in subsonic and supersonic flows since the turbulent Mach number 
will be quits small unless the mean-flow Mach number is quite large. But these 
arguments apply only to parallel shear flows such as those that occur in boundary 
layers, jets and wakes. The variation in mean velocity is relatively unimportant in 
such flows and its effect can be largely removed by a Galilean transform which does 
not alter the equation of motion. The situation is quite different for the type of flow 
being considered here. These flows usually involve large accelerations and, in order 
to ensure that the model will remain valid for reasonably strong turbulence, we must 
assume that the scale of the turbulence is not substantially smaller than the scale on 
which the mean flow changes. 

2. The basic equation 
We consider an inviscid non-heat-conducting compressible flow past an obstacle 

and suppose that the upstream velocity consists of a uniform portion U, on which 
there is imposed a small amplitude unsteady m0tion.t Correspondingly, we also 
suppose that there exist small unsteady perturbations in the otherwise uniform physical 
properties of the fluid. There are no essential restrictions on the Mach number of the 
flow. Now the nature of the small amplitude unsteady motion on a uniform flow has 
been understood for some time (IiovAsznay 1953). I n  such flows the velocity field can 
be decomposed into the sum of (i) a disturbance (often called a gust) that  is purely 
convected (i.e. frozen in the flow), has zero divergence and is completely decoupled 
from the fluctuations in pressure or any other thermodynamic property and (ii) an 
irrotational disturbance that produces no entropy fluctuations but is directly related 
to  the pressure fluctuations and is, as a result, connected with any acoustic-type 
motion that may occur. We therefore refer to the latter disturbance as ‘acoustic’ 
though we realize that it will occur even when the fluid is incompressible. Finally, the 
fluctuations in entropy are decoupled from the velocity and pressure fluctuations, 
but  do produce density fluctuations, and are also ‘frozen in the flow’. It is important 
to notice that each of these three modes of motion is itself a solution to  the governing 
equations and can therefore be imposed on the flow independently of the others. 

Since we are considering the upstream region of the flow, the ‘acoustic ’ disturbances 
will always correspond to actual acoustic waves. We are a t  liberty to impose arbitrarily 
the portion of the acoustic waves propagating inwards, towards the obstacle but the 

t A list of some of the more commonly used symbols is given in appendix E. 
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outward-propagating waves must be determined by the solution. We are not interested 
in imposing an incident acoustic field on the flow but we shall otherwise consider the 
most general type of incident disturbance field, which, as we have seen, consists of 
the gust and entropy modes. 

Since these disturbances are both frozen in the flow (i.e. they appear steady to  an 
observer moving with the mean flow) and the acoustic field will decay a t  infinity in 
the absence of incident acoustic waves, the upstream velocity field must be of the form 

(2.1) v(x, y, z, t )  = iU, + u,(x - Urn t ,  y ,  z ) ,  V . u, = 0 as x --f - 00, 

where t is the time, (2,  y ,  z )  are Cartesian co-ordinates and i is a unit vector in the 
x direction, which we have assumed .to coincide with that of the mean flow. The 
entropy S must be of the form 

S = s,(X-U,t,y,z) as r+-co. ( 2 . 2 )  

Finally, since neither the entropy nor the vortical mode will produce any pressure 
fluctuations we must require that 

p +p, = constant as x + - co. (2.3) 

The functions u, and s, are boundary conditions that can be imposed on the flow. 
They are often taken to be stationary random functions of their arguments in order 
to represent turbulence in the incident stream. Liepniann (1952) was probably the 
first to use statistical methods in conjunction with a flow of the type of (2 .1)  to 
represent an incident homogeneous turbulence field. A more detailed treatment has 
recently been given by Hunt (1973). 

2.1. Derivation of linearized equations 

We shall, for simplicity, restrict our attention to an ideal gas, so that the pressure p ,  
density p and temperature T are related through a gas constant R by p / p  = RT. We 
also suppose that the specific heats are constant, so that the change in the entropy S 
between any two states 1 and 2 is related to  the corresponding pressures and densities 

(2.4) 

Since the flow is assumed to  be inviscid and non-heat-conducting the governing 

( 2 . 5 )  

(2.6) 

DS/Dt  = 0, (2.7) 

momentum, continuity and energy equations can be written as 

p DvlDt  = - Vp, 

DplDt +pV , v = 0, 

respectively, where v is the velocity and 

D/Dt = a p t  + v . V 

is the substantive derivative. 
We shall suppose that any shock waves that may exist will always remain quite 

weak. Then if urn and s, were zero the imposed velocity iU, would produce a steady 
flow field U = {Uz, U,, Us) that could be expressed in terms ofa potent'ial @(x, y, z )  by 

U = VO. ( 2 . 8 )  
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The entropy would be everywhere equal to a constant, which we can take without 
loss of generality to be zero. Then (2.4) shows that the pressure po and density powould 
be related by p0/& --= constant, 

where K = c p / c ,  is the ratio of the specific heats. 

but non-zero, (2.5)-(2.7) will possess a solution of the form 
I n  the general case where urn and s, are small (relative to Urn and cp respectively) 

(2.10) I v = U ( x )  +u(x, t ) ,  p = po(x) +p‘(x, t ) ,  

p = po(x) +p/ (x ,  t ) ,  f l  = s’@, t ) ,  

where we have put 

and both u and the primed quantities denote small perturbations of the order of 
u, and s,. 

If the obst,acle is thin in one transverse dimension (i.e. if it has small fineness ratio) 
we shall suppose that either (i) the upstream mean-flow Mach number Nrn is always 
sufficiently far from unity to  ensure that (Landahl 1961, pp. 3-8) 

IM,-llnot < 1 ( 2 . 1 1 ~ )  

or (ii) that the characteristic frequency w, of the unsteady motion is large enough to 

= ( z I , x 2 , x 3 ) ,  = 2, 22 = y, 2 3  = z 

ensure that (2.1 1 b)  

where I is a c,haract>eristic dimension of the obstacle in the upstream mean-flow 
direction. Then (2.5)-(2.7) can be linearized about the mean flow (2.8) for obstacles 
of any fineness ratio. We can therefore neglect squares of small quantities and subtract 
out the mean-flow equations 

pou.vu = -vpo, U.Vp0+poV.U = 0 (2.12U, b )  

to obtain po(Dou/Dt + u . V U )  +p’U . VU = - Vp‘, (2.13) 

D,p’/Dt+p’V.U+V.(p,u) = 0, (2.14) 

D,s’/Dt = 0, (2.15) 

where D,/Dt = a/at + U . V denotes the convective derivative associated with the 
basic steady flow. 

The derivation of the final results can be simplified by first transforming (2.13) 
into a more convenient form. I n  order t’o do this we apply (2.4) between the state 
(denoted by the subscript 0) of the mean background flow a t  the point x and the 
actual state at that point and then neglect the squares of small quantities to show that 

8’ = - cp P’/Po + c, P7PO. 
Then it follows from ( 2 . 1 2 ~ )  that  (2.13) can be written as 

S’ 1 
vpo--vpt - -e+u.VU--U.VU = - 

Dt CP KPO Po Po 

D U  

Equations (2.9) and (2.15) therefore imply that 

Do u*/Dt + U* . VU = - V ( p ’ / p o ) ,  

where u* = u - ( s ’ /2cp )  u. 

(2.16) 

(2.17) 

(2.18) 
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This equation can be used in place of the linearized momentum equation (2.13). It 
has the same form as the momentum equation for a barotropic flow but with the 
actual velocity replaced by what we might call the effective velocity u*. 

It is also helpful to transform the continuity equation (2.14). To this end we note 
that (2.12b) can be combined with (2.14) to obtain 

1 -- Dop’+-v.p,,u = 0. 
Dt Po Po 

Then since the speed of sound c,, of the mean background flow is equal to (c, po/cL; p,,)*, 
(2.16) can be written as 

It therefore follows from (2.15) that 

(2.19) 

2.2. Integration of linearized equations 

We have now replaced the original system (2.13)-(2.15) by (2.15)) (2.17) and (2.19). 
Equation (2.15) is a first-order linear partial differential equation that can be easily 
integrated. In order to accomplish this we notice that, as pointed out by Darwin 
(1953)) the equations 

(2.20) 
dx dy dz _ - = - -  - dt _ -  
uz U, V ,  

for the streamlines of the basic flow U = (U,, U,, V,) (which are the characteristic 
equations of this first-order partial differential equation) possess two functionally 
independent integrals Y ( x ,  y ,  z )  and Z ( r ,  y, z )  such that 

Y - t y ,  Z-tz as x+--oo. (2.21) 

Moreover, the equations of the streamlines y = y,(x, Y , Z )  and z = z,(x, Y , Z )  [which 
are the solutions of ( Z . Z O ) ]  can be obtained by solving the equations Y ( x ,  y, z )  = con- 
&ant and Z ( x , y , z )  = constant for y and z as a function of x (which, in geometric 
terms, means that the mean-flow streamlines lie along the intersections of surfaces 
Y = constant and X = constant). For two-dimensional potential flow there exists a 
stream functionY and we can take Y and Z to beY/U, and z, respectively. 

Finally we introduce Lighthill’s (1956) ‘drift’ function 

whose difference between any two points on a streamline is equal to the time it 
takes a fluid particle to traverse the distance between those points. The y and z 
dependence of this equation results from the y and z dependence of Y(x ,  y ,  z )  and 
Z(x,y,z). Then t -A (x , y , z )  is the third independent integral of (2.20) and it 
follows from elementary differential equation theory that the vector 

x = {XI, x,, X,], (2.23 a) 

where X I =  UoA, X , =  Y ,  X , = Z ,  (2.23 b )  
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must satisfyt D”(x-nU,t)  = 0 
Dt 

(2.24) 

and that the most general solution to (2.15) can be written as 
h 

s’ = S(X -nurn t ) ,  (2.25) 
A 

where S is an arbitrary function of its arguments. 
We shall now integrate (2.17). Let Ul = U,, U, = U, and U, = U,. Then since (2.8) 

implies that aUi/axj- avj/axi = 0 (for i = 1,  2, 3) it is easy to see that we can satisfy 
(2.17) for any function q5 of x and t by putting 

P f  = -Po Do +/Dt (2.26) 

and u* = V#. However, this is certainly not the most general solution to (2.17). In  
fact, it cannot even be made to satisfy the upstream boundary conditions (2.1) and 
(2.3). In  order to  obtain the general solution we note that 

and use (2.24) to show that the homogeneous equation 

Do U(*)/Dt + ~ ( a .  VU = 0, (2.27) 

where dH) = (uI*), ukH), uLH)), possesses the solution 

.IH) = d ( X  - nu, t )  . ax/ax, for i = I, 2,3,  

where d is an arbitrary vector function of its argument X - PU, t .  Since this solution 
involves three arbitrary scalar functions, it is also the most general solution of (2.27). 
The vector dH) is therefore a homogeneous solution of (2.17) and the most general 
solution to this equation is given by (2.26) and u* = V+ +u(*). Hence it follows from 
(2.18) that the most general solution to the original momentum equation (2.13) is 

u = V# + u(Z) ,  (2.28) given by (2.26) and 

where u(I) = (@, u h I ) ,  @)) is defined by 

u ~ I )  = ( s f / 2 c , ) U i + d ( X - ~ U , t ) . a X / a x ,  for i = 1 , 2 , 3 .  (2.29) 

Equations (2.13) and (2.15) are identically satisfied by (2.25), (2.26) and (2.28) for any 
function q5 of x and t and any functions 8 and d of X -?Urn t .  However, we must still 
satisfy the continuity equation (2.14) or equivalently (2.19). To this end we substitute 
(2.26) and (2.28) into the latter equation to obtain 

1 

Po 
= -V.p,u(Z). (2.30) 

Then since # is arbitrary we can ensure that the continuity equation will be satisfied 
by requiring that satisfies the linear inhomogeneous equation (2.30) with source 
term pol V .pa ~(1). The original system of equations (2.13)-(2.15) will then be satisfied 
by (2.25), (2.26) and (2.28) for any choice of tjhe functions 8 and d. Since (2.30) is a 

7 Equation (2.24) merely states that each component of the vector X - l U ,  t remains constant 
for an observer moving with the mean flow. The components X, and X,, which remain constant 
along the mean-flow streamlines, will certainly have this property and the remarks following 
(2.22) show that X ,  - U, t also has this property. 
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linear inhomogeneous wave equation, we can require that $ satisfies an appropriate 
linear boundary condition (to be discussed below) on the surface of the obstacle and, 
as long as V . po u(I) goes to zero as xl -+ - 03, we can also require that 

$(x,t)+O as x,-+--Co. (2.31) 

and .d can be adjusted to make the above 
solution satisfy the upstream boundary conditions (2.1)-(2.3). To this end notice that, 
since (2.21), (2.22), and (2.23) imply that X-PU,t+x-iU,t as x1-+--0o, it  follows 
from (2.29) and (2.25) that u(I)will approach u m ( x - Z I L t )  as xI-+-cc ifwe put 

We shall now show that the functions 

.d (X-IU, t )  = u,(X-5Umt)-I(~m/2c,)~(X-Iu,t) .  

But since po -+ constant as x1 -+ - 00 and V . u, = 0, the right side of (2.30) will vanish 
as xl-+--co and we can therefore require that 4 Satisfies the boundary condition 
(2.31). Then since U-tSU, and po-+constant as xl-+-oo, it follows from (2.10), 
(2.26), (2.28) and (2.29) that the upstream boundary conditions (2.1) and (2.3) are 
satisfied. Finally, (2.25) implies that we can satisfy the upstream condition (2.2) by 

putting &X-PU,t) = s,(X-IU,t). 

We have now shown that the solution to the linearized equations (2.13)-(2.15) 
that satisfies the upstream boundary conditions (2.1)-(2.3) and still retains enough 
generality to satisfy an appropriate linear boundary condition on the surface of the 
obstacle (to be discussed subsequently) is given by ( 2 . 2 8 ) ,  (2.26) and 

s' = s , (X-Z&' t ) ,  (2.32) 

ax 1 
where ul ' ) -u , (X-?U, t ) . -+ - s , (X-ZU, t )  , i =  1 , 2 , 3 ,  (2.33) ax, 2c, 

and $ is a solution to the inhomogeneous wave equation (2.30) that satisfies (2.31) 
at infinity and an appropriate linear boundary condition on the surface of the obstacle. 
When the boundaries are rigid this condition is the result of requiring that the normal 
component of the velocity should vanish at the surface, in which case it follows from 
(2.28) that the boundary condition can be written as 

fi . V$ -+ - i3 . (as x approaches the solid surface), (2.34) 

where fi is the unit normal to the surface. 
These results show that the velocity field is the sum of (i) a 'known' velocity u(I) 

that can be calculated by quadratures from the basic potential flow velocity field 
U and the imposed upstream velocity and entropy fields u, and s, and (ii) a velocity 
V$ that is the gradient of a perturbation potential, which determines the pressure 
fluctuations in the usual way via (2.26). This potential is, in turn, determined by the 
inhomogeneous wave equation (2.30), the left side of which is simply the wave equation 
for a slightly unsteady potential flow while the strength of the dipole source term 
on the right side is effectively the known incident velocity field d2). 

2.3. Inierpretaiion of results 
It is clear from (2.28) that the vorticity vector w = V x u is completely determined 
by u(I) (i.e. w = V x , (I)) ,  the first term of (2.33) contributing a term that represents 
the effect of the imposed upstream vorticity field 

w,(x - ?Urn t )  3 v x u,(x - fU,  t )  



442 M .  E. Goldstein 

and the second term of (2.33) contributing a term that represents the vorticity 
generated by the incident entropy field. I n  fact, it is shown in appendix D that the 
contribution from the first term in (2.33) is simply 

(2.35) 

where the ai = X i  - Si, , U, t are essentially Lagrangian co-ordinates and laa/axl 
denotes the determinant of the aai /axj .  This result is easily recognized as the linearized 
version of Cauchy’s equation for the vorticity field in a barotropic flow. However, we 
have now shown that i t  represents the portion of the vorticity arising from the imposed 
upstream vortical velocity field (i.e. the portion of the vorticity field that is directly 
imposed on the flow) even when the flow is non-barotropic. (A corresponding result 
holds even when the flow is not linearized.) 

I n  flows that exist for all time we can, with suitable caution, always represent the 
incident disturbance field u,(x - iU, t ) ,  s,(x -!Urn t )  by the generalized Fourier 
integrals 

u,(x-iU, t )  = A(k) exp (ik . x’) dk, s,(x -iU, t )  = B(k) exp ( ik .  x’) dk, s s 
where X I  = x - 911, t and in order to ensure that u, is solenoidal we must require that 
A .  k = 0 for all k .  Then since (2.33),  (2.30) and (2.34) are linear in q5, U, and s, we 
can find the solution q5 for any upstream disturbance field u,, s, simply by super- 
posing solutions to the corresponding problem for an arbitrary incident harmonic 
disturbance field 

u, = Aexp(i(k.x-k,Ci,t)}, s,  = Bexp(i(k.x-k, vat)}. (2.36) 

Hence, in many cases, we need consider incident disturbances of this type only. 
The portion dZ) of (2.28) represents the direct effect of the upstream disturbances 

u, and s,. Suppose first that  the flow is barotropic, i.e. s, = 0. Then u(I) is equal to  
dH) [with the arbitrary vector d set equal to u,; see (2.29), (2.33) and the equation 
following (2.27)] and therefore satisfies (2.27). If the second term in this equation 
were zero (so that D,u(zj/Dt = 0 ) ,  u(z)would be equal to u,(X-iU,t) [see (2.24)] and 
would therefore remain constant, for an observer who moved along the mean stream- 
lines a t  the mean flow velocity [since I’ and 2 are constant along these streamlines 
while the change in A bet,ween any two points on a streamline is equal to the time it 
takes a fluid particle to t>raverse the distance between t,hem; see (2.23b)l. But since the 
mean velocity is different, on different st>reamlines and since the streamlines themselves 
converge and diverge the spatial distribution of dZ) will be different near the obstacle 
from its form a t  upstream infinity. In  this way the mean flow is able to  distort (i.e. 
to alter the character of) the incident disturbance field u, even when the second term 
in (2.27) is absent. 

The nat,ure of the alteration is best appreciated by considering the simple harmonic 
velocity disturbance in (2.36).  Then u(Z) (with the aX/ar, factor omitted) will equal 
Aexp (ik. (X -it& t ) } ,  which shows that the amplitude of this disturbance is un- 
altered while its phase is changed from k . (x - iCL t )  to k . (X - f U, t ) .  Moreover its 
propagation direction (i.e. the direction normal to  its phase surface) is ki VXi while its 
phase velocity is k, U,/l ki OXi\ .  
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This vector is perpendicular 
to,e=c, a t  t = -m 
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This vector is 

tog=c, 7 

Position o f g = c . , a t t = - -  
XU, =O * n(m)II u, =constant =cI ,  

at  time t 

AgXu"'=O-Vg IIuo) 

FIGURE 1. Evolution of u(') for barotropic flow (Vg perpendicular 
to g = constant for any fiinct>ion 9) .  

The net effect of the second term in (3.27) is t'o change ucnfrom u,(X-fli, t )  into 
the solution uy) = U,(X- iU, t )  . iiX/iixi, i = 1 , 2 , 3 ,  

of the complete equation. This formula implies that the vector u(I) always remains 
perpendicular to the sameJEuid surface? as it is convected downstream by the meanJEow. 

I n  order to show this notice (i) that, since X - iU, t remains constant when following 
a fluid particle, any mean flow fluid surface can be represented by an equation of the 
form g(X-iU,t) = constant and (ii) that  the chain rule for partial differentiation 
implies that  Vg = n ~ " ) ( X - i U , t ) V S i ,  where n\")(X-?U,t) = ag(X-iU,t)/aX, (see 
figure 1) .  Hence it follows$ that Vg x u(I) will equal zero if 

u,(X-iU,t) x n(,)(X-iU,t) = 0. 

But since X - 1 U, t remains constant when following a fluid particle and reduces to 
x-iU,t when that particle is far upstream, n(") will equal Vg when the surface 
g = constant is far upstream and will, therefore, remain perpendicular to the up- 
stream configuration of this surface. Then since vectors with a zero cross-product are 
parallel, u(Z) will be perpendicular to g = constant a t  (x, t )  if u, was perpendicular to 
this surface when it was far upstream. 

Now we can always think of the vector u(I)(x, t )  as being permanently attached to 
any mean-flow fluid surface, say g(X - iri, t )  = constant, that passes through the 
point x a t  the time t. Then since u(I)-tu, a t  upst'ream infinity, the preceding result 
shows that u(Z) will be perpendicular to the surface g = constant if it was perpendicular 
to it a t  the time t = - co, when it  was a t  upstream infinity. This proves the assertion. 

If it were not for the factor aX/axi and consequently the second term in (2.27), the 
orientation of u(')would remain unchanged as it moved downstream. The second term 

t A fluid surface is one that always consists of the same fluid particles. 
$ By inserting the expressions for Vg and u(') into the cross-product and interchanging dummy 

indices in the result. 
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in (2.27) is therefore responsible for keeping u(I) perpendicular to  the mean-flow fluid 
surfaces. 

This term also causes u(I) to change in magnitude. But since (2.24) implies that 
U . VX, = Do XJDt  = U, 6,i, 

which shows that 1UJ times the streamwise component of u(I) (i.e. the component 
along the mean-flow streamlines) now remains unchanged relative t o  an observer 
moving with the flow. This component of u(I)is therefore (i) unaffected by the trans- 
verse distortion components u,, and u,. and (ii) becomes infinite a t  all stagnation 
points of the mean flow. The cross-stream components of u(I), on the other hand, are 
affected by all components of u,. 

The streamwise velocity fluctuation IUluLz) is not the only quantity that remains 
'frozen in the flow'. In  order to  show this note that the results of appendix D (i.e. 
equation (D 2 )  together with the Laplace expansion formula for determinants) imply 
that 

Hence, using the well-known result IaX/axl = po/pm, we find that 

also remains constant for an observer moving with the mean flow. Then when the 
upstream velocity distortion is initially complex lamellar (i.e. when? u(') . w = 0 at  
upstream infinity) u(I) will satisfy that condition a t  all points of the flow. However, i t  
should not be concluded from this and the fact that V# is itself lamellar that the 
complete velocity field V $  + u(I) will then be complex lamellar, since V# . w will not in 
general be zero. 

It is again instructive to  consider the simple harmonic disturbance (2.36). Then the 
effect of the factor axlax,, and consequently the second term in (2.27), is to  change 
the amplitude of the disturbance from its initial value of A to A,  V X ,  while leaving 
its phase the same as in the previous case. 

Thus the phase changes are produced by the first term in (2.27) while the amplitude 
changes are produced by the second. The amplitude varies from A to A , V X ,  while 
the propagation direction (i.e. the phase-surface normal) varies from k to ki VX, .  
The streamwise amplitude component (U/(UI).  [ (OXi)  Ail is equal to U,A,/lUl and 
therefore varies in inverse proportion to 1U) and is independent of the transverse 
amplitude components A,  and A,. 

Since u,(x - iU, t )  has zero divergence, k . A  = 0 and the initial propagation 
direction of the upstream disturbance is perpendicular to its amplitude, i.e. the 
upstream disturbance is a transverse wave. But since k i V X i  will not in general be 
perpendicular to A i V X i ,  this condition will not be maintained near the obstacle. It 
can also be seen that u(I)will not in general remain divergence free in this region. 

Since V x urn is now equal to ik x A exp {ik . (X -PU, t ) )  and (k x A) .A  = 0, the 

t A vector field V is said to be complex lamellar if i t  is everywhere perpendicular to a one- 
parameter family of surfaces (i.0. if there exist real scalar functionsf and g such that V = gVf). 
However, i t  can be shown (Truesdell 1954, p. 23) that this is entirely equivalent to the requirement 
that V. ( V  x V) = 0. Complex-lamellar fields have been extensively studied in the fluid-mechanics 
context (see Truesdell 1954, p. 38 for references) and their properties are well understood. 

u ( I ) . ~  = u(I).(v X U ~  = U(I) .O(~)  = )ax/ax]u,(x-~~, t ) .o , (~-a~i ,  t ) .  

u'".w/po = u,(X-^lUmt) . w , ( X - i U , t ) / p ,  
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upstream distortion field is complex lamellar in this case and ~(1) is therefore complex 
lamellar everywhere in the flow. 

Now suppose that s, + 0. Then (2.33) implies that the incident velocity field u(n 
will contain the additional term 

which, in view of (2.8), can also be written as 

This shows that the entropic portion of u(I) is everywhere perpendicular to  the surfaces 
of constant @ - V: A and is therefore complex lamellar. 

It follows from (2.24) and (2.233) that  the streamwise component (U/IUI) .dS) of 
dS) is equal to 

But the mean-flow energy equation IU(2- U2, = 2 c p ( T W - T ) ,  where T is the mean 
temperature and T, is its value a t  upstream infinity, implies that  this can also be 
written as 

These results show that the streamwise component of dS) will become infinite a t  the 
mean-flow stagnation points and will become large a t  any sharp turns in the flow 
since the latter cause IU/ to become large. 

Since p‘ goes to zero a t  upstream infinity, the ideal-gas equation implies that the 
upstream temperature fluctuation t ,  is related to the corresponding density fluctuation 
by t,/T, = - lim (p’lp,,). Hence (2.16) implies that s, = c,t,/T, and therefore 

that the streamwise component of dS) is related to t ,  by 
X+- m 

We can get an idea of the relative importance of the entropy fluctuations by com- 
paring this with uLI ) ,  the streamwise component of u(I) produced by the upstream 
velocity fluctuations. The ratio of these two quantities is 

The streamwise entropy fluctuations will therefore be most important a t  sharp turns, 
where the mean velocity [U[ becomes large relative to  U,. At the other points of the 
flow, where [Ul is of the same order as U,, the entropy fluctuations will be of equal 
importance to  the velocity fluctuations when tm/T, is of the order ofu,lU,. 

The vorticity d2) associated with ds), 
d2) E V x u(S) = (ZC,)-’ (VS,) x V(@ - U: A), 

is perpendicular to  V(@ - UZ, A) and t,herefore also to dS). This shows that dS). d2) is 
everywhere zero for all upstream disturbance fields. However the complete incident 
distortion u(Z) will not in general have this property even when the initial velocity 
distortion is complex lamellar. 
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When (corresponding to the first group of studies alluded to in the introduction) 
one of the transverse dimensions of the solid obstacle is small, Xi 2: xi and Ui N cYl,i Urn 
for i = 1, 2, 3 and po fi constant. Then u(I) N u , ( x - f U m t )  and the source term in the 
wave equation (2.30) will vanish since u, has zero divergence. Consequently, the 
portion V$ of the velocity field associated with the pressure fluctuations through 
(2.26) becomes decoupled from the incident velocity field u(I) and we recover the 
behaviour that was ascribed to the small fluctuations on uniform flows a t  the beginning 
of this section. 

I n  the general case, where the obstacle's transverse dimensions cannot be treated 
as small, the portion V$ of the velocity field is still associated with the pressure 
fluctuations via (2.26) but the incident velocity field can now alter # through the source 
term in the inhomogeneous wave equation (2.30). This occurs because, as we have 
just seen, the distortion effect ofthe mean potential flow destroys the initial divergence- 
free condition exhibited by the incident momentum flux po u ( I )  a t  upstream infinity 
[where it is equal to pm u,(x -PU, t ) ] .  The source term in (2.30) is therefore non-zero 
near the obstacle, causing @ and consequently p' also to  be non-zero there. I n  this 
way pressure fluctuations are set up t o  balance the fluctuations in momentum that 
arise from the distortion of the gust by the potential flow about the obstacle. 

On the other hand, V$ and u(') are not complebely decoupled even when the mean 
flow is uniform since the right side of the boundary condition (2.34) will not vanish 
even in this case. However, u(I) will still be unaffected by the entropy fluctuations, 
which therefore become decoupled from both the pressure fluctuations -po Do $/Dt 
and the 'acoustic' portion V# of the velocity field. 

I n  the general case, the entropy fluctuations affect the pressure fluctuations and 
the acoustic portion of the velocity field through both the boundary condition and the 
source term in (2.30).  The solid surface can therefore 'scatter' entropy fluctuations 
into a propagating sound field. 

2.4,  Incompressible limit 

As long as the frequency of the unsteady motion is not too large, the fluid will behave 
incompressibly when the mean-flow Mach number is sufficiently small. We can then 
put pa = constant and co = 00 in (2.30) to  obtain 

V2# = -V.u(n as Um/co-+O. 

When there are no upstream entropy fluctuations, this can be combined with (2.33) 

V2$ = -- u,(X-PU,t).- for s, = 0 and U,/co+O. (2.37) 
to  obtain 

This Poisson equation governs the flows in the second group of studies alluded to be 
in the introduction. However, i t  has never actually been used to calculate these flows. 
It is therefore worth comparing i t  with the equabions used by Hunt (1973). He started 
from Cauchy's equation (2.35) for the vorticity and represented the velocity field in 
terms of the vector and scalar potentials Q0 and Y with t,he choice of gauge V .Y = 0 

(2.38) 
to  obtain 

The incompressible continuity equation V . u = 0 then implies V2a0 = 0. It therefore 
follows from (2.35) and (2.38) that  Hunt had to solve a set of three Poisson equations 

axi "I "I axi 

u = -V@o+vxY,  0 3 v x u  = -V2\Y. 
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and one Laplace equation. The formulation (2.37) has the advantage of reducing the 
problem t o  the solution of a single Poisson equation. 

2.5. Extension to two-dimensional lifting surfaces 

There is one important case where the assumption (2.21) (on which the present results 
are based) is invalid (Goldstein & Atassi 1976). This occurs whenever a two-dimensional 
obstacle produces lift in a subsonic stream.? Then since the flow is two-dimensional 
Y = Y / U ,  while it follows from the theory of potential flows that Y/U, behaves like 

y + (rpd7,) In (2 + y2)9 + constant as x-+ - co (2.39) 

rather than exhibiting the behaviour (2.21). (Here r denotes the circulation about the 
obstacle.) Of course, no real obstacle is two-dimensional and we can always move far 
enough away so that three-dimensional effects come into play and the behaviour (2.21) 
is achieved. On the other hand, there are enormous computational simplifications to 
be gained by assuming that the flow about a body of high aspect ratio can be treated 
as two-dimensional. Then, since the velocity field (2.28) and (2.33) will still satisfy 
the linearized momentum equation identically for all choices of u,, s, and $ and 
since we can, in principle, always solve the wave equation (2.30) for q5 subject t o  the 
boundary condition (2.34) and thereby ensure that the linearized continuity equation 
is also satisfied, the formulation given by (2.26), (2.28), (2.30) and (2.32)-(2.34) still 
provides a solution to  the governing equations that has zero normal velocity on the 
surface of the obstacle. The difficulty is that  the boundary conditions (2.1) and (2.2) 
can no longer be satisfied a t  x1 = - 00. This occurs because, as pointed out by Goldstein 
& Atassi (1976), the basic potential flow decays so slowly that there is no longer a 
region a t  infinity that acts like a uniform stream relative to the unsteady motion. But 
since aP/iix+ still approaches 82,i while ri, still approaches 81,iUm and aA/axi still 
approaches a1, JU,, u(I) will now behave like 

u,(x-U,t ,y+(r/27~~j,)ln (x2+y2)*+constant,z) as x-+-co. 

Then since po + constant, 

a )  
a a  ( ax a4 ax 

- v .Po u(I)+ f - + j - + L - . u, (x - u, t, 4, z )  
1 

Po 

r 
2nU, 

evaluated a t  7 = y +- In (x2+ y2)t + constant as x+ - co. 

But since we have required that V .u,(x- U,t, y, z )  = 0,  the source term in (2.30) 
must again vanish as x -+ - 00. We can therefore still (at least in the important special 
case where u, = A exp {i( k . x - U, El t ) }  and 5, = B exp {i( k .  x - U, k, t)}) impose the 
upstream boundary equation (2.31 ). Then the pressure fluctuations will vanish and 
the velocity field will behave like 

u+u,(x- U,t, y+(l?/2n-U,)ln(x2+y2)*+constant,z) as x-2-m (2.40) 

while the entropy fluctuations will behave like 

s’+s,(x- U, t, y+ (172dj,)  In (x2  + y2)3 + constant, z )  as x+ -a. (2.41) 

t A similar difficulty occurs for flow around a source-like two-dimensional body with significant 
mean drag (Graham 1976). 
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Thus, if we want to  take advantage of the simplifications that can be achieved from 
a two-dimensional flow model, we must impose boundary conditions of the type (2.40) 
and (2.41) in place of the boundary conditions (2.1) and (2.2).  If we then wish to 
suppose that the distortions urn and s, are imposed at such a great distance upstream 
that the obstacle appears three-dimensional and the flow behaves like (2.1) and (2.2), 
we can determine the form of the functions u,(x - U, t ,  y, x )  and s,(x - Urn, t ,  y, z )  from 
the imposed boundary conditions and then solve the problem corresponding to a 
two-dimensional potential flow by using these same functions with y replaced by 
y + (I‘/2mUrn) In (xz + y2)* + an appropriate constant. The actual value of this constant 
must be found by solving the complete problem or, much more appropriately, 
by using the method of matched asymptotic expansions with the reciprocal of the 
aspect ratio of the obstacle taken as a small parameter. However, i t  turns out that the 
value of this constant affects only the phase of each of the flow variables and does 
so by the same constant amount. It will therefore have no influence on any statistical 
correlations that may be calculated and, since most incident distortion fields are 
relatively random, will be of little practical interest. 

We have shown that the present formulation can be used to  simplify problems of 
the type already solved. But, more important, it can also be used to solve new types 
of problem which, to  our knowledge, cannot be solved by any other method. One such 
problem is considered in the next section. We suppose that the flow is compressible 
and that the obstacle causes a non-negligible distortion of the mean flow. Then in order 
to  emphasize compressibility effects, we assume that the motion is supersonic. Other 
types of flow will be discussed in subsequent papers. 

3. Supersonic flow around a cloner 
Consider the flow of a uniform supersonic stream along a wall which, as shown in 

figure 2 (a ) ,  terminates a t  the point A .  The stream will remain uniform until i t  reaches 
the Mach line emanating from the point A and then undergo a centred expansion 
of the Prandtl-Meyer type. Such expansions also occur when a uniform stream flows 
around a corner as shown in figure 2 ( b )  and on the upper surface of wedges and flat 
plates placed in a uniform supersonic stream as shown in figures 2(c) and (d). The 
present analysis will apply to  any such flow that involves a Prandtl-Meyer expansion. 
We suppose that an unsteady velocity field of the type (2.1) is imposed on the uniform 
flow in the region upstream of the expansion fan and for simplicity require that the 
entropy fluctuations be zero in this region. Then the unsteady velocity field will be 
given by (2.1) everywhere upstream of the leading Mach line of the expansion fan. 
As shown in figure 3, this line emanates from the centre of the expansion and makes an 
angle with the incident stream equal to  the Mach angle. The unsteady flow in the 
expansion fan downstream of this line can be found by solving (2.30). The Prandtl- 
Meyer solution for the mean-flow variables U, po and co is 

.5; = (qo/y)sin[y(f?*-O)], & = -qocos[y(O*-8)], U, = 0, (3.1)-(3.3) 

co = - u,, (3.4) 

po/p, = [cos y(O* - O)/cos y(8* - Orn)]2’(K-1), (3.5) 
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( h )  

Expansion 

Plate 

(C 1 ( d )  

FIGURE 2. Flows involving Prandtl-Meyer expansions. (a) Flow past an edge. 
( b )  Flow over a wall. (c) Plow over a wedge. ( d )  Flow over a flat plate. 

1 :;ding Mach 
Undisturbed 

FIGURE 3. Prandtl-Meyer expansion fan. 

where U,, U, and V,  are the components of U in r ,  6 and z directions in the polar co- 
ordinate system shown in figure 3, 

Y(Jf2, - 114 +Om, 8, = sin-l 
1 

O* = - Y sin-1 ((f.ll2, - 1) + 1)4) 

and H, is the Mach number of the incident stream. 
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I n  a two-dimensional compressible flow the stream function Y is related to  the 

(3.10) 

Hence it follows from (3.1)) (3.2) and (3.5) that in the present caseit mustbegivenby 

Y = qor{cos [y(8* -O)]}1/~2/cos [y(O* - 0m)]2/(K-1). (3.11) 

It is shown in appendix A that  the drift function for the flow in the expansion fan is 

for 0 >Om, (3.12) 

where I ( 2 )  = y-lZF(i, i  + 1/27,; Q; 2') (3.13) 

and F denotes the hypergeometric function in the usual notation. 
Rather than considering an arbitrary incident velocity field, we can, as explained 

by Liepmann (1952), Hunt (1973) and others, carry out the analysis for a single 
harmonic component 

u,(x - U, t ,  y, z )  = A exp {i[kl(x - U, t )  + k, y + k 3 z ] }  (3.14) 

of this velocity, where A(kl, k,, k,) is a constant vector, and, if need be, integrate the 
final solution over the wavenumbers k,, k, and k, to obtain the result corresponding 
to the required initial disturbance field. The vector A is not completely arbitrary 
since in order to ensure that u, has zero divergence we must take 

k . A  = 0, (3.15) 

where k = (kl, k,, k,) is the wavenumber vector. 
Since the mean flow is two-dimensional, we can take Y = Y / U ,  and Z = z. Then 

since A and Y are equal to r times a function of 8, it follows from (2.23), (2.33), 
(3.5), (A 9 )  and (A 10) that #), up) and u"), the r ,  B and z components of the incident 
velocity dZ), are given by 

exp (i[k, U,(A - t) + k , Y / U ,  + k, z] } ,  ( 3 . 1 6 ~ )  

' "1 exp{ i [k ,U, (A- t )+k ,Y/U,+k,z ] } ,  (3.16b) 
1 aA 

u(,I) = A, exp {i[k, U,(A - t )  + kzYP/U, + k,z ] }  

and that the right-side of (2.30) is given by 
( 3 . 1 6 ~ )  

(3.18) where 

are functions of 6' only. 
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By int'roducing polar co-ordinates and using (3.1)-(3.5) we can write the left side 
of (2.30) as 

ad Y sin [y(O* - e)] - - - cos [y(O* - O ) ]  sin2 [y(O* - d ) ]  - 1 
ar r 

2 

Yr 
- - sin [y(O* - 8)] cos [ y(8* - 8) ]  

where we have put = $ / C O S  [y(O* -@)I. (3.20) 

Hence, upon introducing the new independent variable 

7 = sin [y(8* -@I, (3.21) 

(2.30) becomes 

r - - - (1-q2)-  +-- qr-+y2(1-q2)- + - + 1  7 2 - 1  r- 
q; at2 21 y;o:[ :! 871 [(;2 ) ] :: 

= [Ho(q) + irH,(q)] exp ( i (k3z - k, Urn t)}exp ir k, +27/(1-72)* ar a7 

a2d 

[ [ ' r * + % ] )  

for qo < y < 1, 

where we have put v0 E sin [y(d* -Om)] 

(3.22) 

(3.23) 

and q = 1 corresponds to the maximum permissible turning of the Prandtl-Meyer 
flow. 

Since aY/ax, = - (po/pm) U2 and aY/ax2 = (po /pm)  U, and since U2 -+ 0, U, -+ Urn and 
po+pm while (3.1), (3.2), (3.4), (3.8), (3.9) and (A7)-(A 10) show that UmaA/ax,-+-S1,i 
as8+O,,itfollowsfrom (2.33), (3.l l)and(3.12)that 

u(z)+um(x-U,t ,y,z)  as 8+8,. 

Hence it follows from (2 .28 ) ,  (3.20) and (3.23) that the tangential velocity components 
will be continuous across the leading Mach line 8 = 8, only if 

d =  o at 9 = y o .  (3.24) 

On the other hand, the tangential velocity will remain finite a t  r = 0 only if 

r-la[$ COS'Y(O* - s)]/ae 
remains finite and, consequently, only if ( 1  - 72)4  $-+ constant as r -+ 0. Hence, in view 

(3.25) of (3.24), we must require that $ = o  a t  r = ~ .  

Since it is clear from (3.21)-(3.25) t'hat the time and z dependence can enter the 
solution only through a factor of the form exp[i(k,z-k,U,t)], $ must satisfy a 
second-order partial differential equation in r and 7. It is easy to show in the usual 
way that this equation is hyperbolic and its characteristics are 7 = constant and 
r ( y (  1 - 72)")4 = constant, where u = 1/(2y2). Hence the boundary condition (3.24) is 
imposed on a characteristic curve while the boundary condition (3.25) is imposed on 
the degenerate characteristic of the other family that corresponds to the intersection 
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of these characteristics. It therefore follows from the theory of hyperbolic equations 
that, t'he boundary conditions (3.24) and (3.25) are just sufficient to determine uniquely 
the solution to (3.22) everywhere in the expansion fan. 

Now (3.22) has variable coefficients that depend on both r and 7 and it cannot be 
solved by separation of variables in any co-ordinate system (Goldstein 1970). But 
since the variable coefficients are linear in r and since (3.22) involves only first deri- 
vatives with respect to 7, it can be reduced to a first-order linear partial differential 
equation by taking its Laplace transform with respect to r .  Such equations can always 
be solved by the method of characteristics. Thus, defining the reduced variable $ by 

6 = exp ( - ik, U, t + ik, x )  $(r, r), (3.26) 

letting (3.27) 

be the Laplace transform of this quantity and taking the Laplace transform of both 
sides of (3.22), we obtain upon using (3.11), (3.12) and (3.25) and collecting terms I 

(3.29) where we have put 

and w (7sQ0/ik1) -7. 

Taking the Laplace transform of (3.24) we obtain 

(3.30) 

9(S,70) = 0. (3.31) 

Equation (3.28) is a first-order linear partial differential equation whose charac- 
teristic equations are 

- Qod7 - - - 
ds 

(1 - y2) (s2 - @) + (kl w/QO y ) 2  2ikl W (  1 - q2)  2[ (ikl w~/QO r2) - S( 1 - 72)]  g + G' 
(3.32) 

where we have put 

Q =  T Q O  i ~ Q o H i ( 7 )  
ik i [w-  rQo ai(7)I - ik2 rQo aA7) k0(') + i k J w  - rQo a1(7)1 - ik2 rQo 4 7 )  

and 

(3.34) 

(3.35) 

(3.36) 

and used (3.8), (3.9), (3.11), (3.12), (3.21), (3.23) and (3.29) to obtain the last four 
equations. 
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Using w as a new variable in place of s, we find t.hat t,he characteristic equat,ion 
given by the first two terms of (3.32) is equivalent to 

(3.37) 

Integrating the remaining characteristic equation along the characteristic curve of 
(3.37) passing through the point (7, s) ,  we find that the solution to the partial differential 
equation (3.28) that  satisfies the initial condition (3.31) is given by 

where W ( s ,  ~ I f j )  denotes the solution of 

(3.39) 
d W  (1  - $ 2 ) y 2 [ ( W + y ) ( 3 T Y + y ) + ~ 2 ( Q 0 k 3 / k 1 ) 2 ] -  W2V2 

T y y  = 
d7 

that  satisfies the boundary condition 

2y2( 1 - $2) $ 

W = w(7) = (qsQo/ikl) - y  a t  +j = 7. (3.40) 

Taking the inverse Laplace transform of (3.38) and using (3.20), (3.21) and (3.26), we 
find that the acceleration potential 4 is given by 

r( 1 - y2)1 
q5 = exp { - i ( t  - r / t t )  k,  U, + i k ,  z }  

Y 

where 

(3.42) 

and the constant a must be so chosen that t,he pst2h of integration is to the right of the 
singularities of the integrand. 

This completes the formal solution of the problem. The velocity and pressure fields 
can becalculatedat all pointsoftheexpansion fan byinserting (3.16) and (3.41)in (2.26) 
and (2.28). It is evident from (3.16), (3.18), (3.19) and (3.41) that these quantities 
must be of the form 

u, = exp{-ik,Um(t-r/ti,)+ik3z}M,,j(r,~)Aj for v = r ,O , z ,  (3.43) 

p'/pn = e x p { - i k , U , ( t - r / U , ) + i k , z } N . ( r ,  @ A j ,  (3.44) 
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where the summation over the repeated index is to be from 1 to 3. The coupling 
coefficients and Nj are independent of the amplitudes A j  of the incident velocity 
field and can be calculated from (3.16), (3.18), (3.19) and (3.41). In fact, since it 
followsfrom (3.11), (3.12), (3.21), (3.34), (3.35) and (A9) that 

a2 - u, aA a1 i ayP 

r ae (1-72)t '  U,rae ( I - T , I ~ ) ~ '  

UmA Pl YP 

--=- -_-- 

P 2  -=- - -  -- 
r (1-72)i' U,r ( 1 - 7 2 ) i '  

where (3.45) 

they can be written as M,, = M t $  + m ,  i, (3.46) 

(3.47) 

where 

(3.48) 

( 3 . 4 9 ~ )  

K$") = ( l+*U,)  ik r K,+r-  aK?n 
ar I 

(3.49c) 

(3.50) 

( 3 . 5 1 ~ )  

Kim) = ik3rKm I (3.5 1 c) 

4 , j  = al(7) aj(r) + Pl (T)P j (T)  for 1 7 . j  = 1 7  2, (3.52 a) 

D3.j = q , 3  = 4 , 3 ( 1  -s2) (3.52b) 

and we have set a3 = P3 = 0. 
Equation (3.39) is an Abel equation of the second kind that cannot be solved in 

closed form. There is, therefore, no hope of evaluating the contour integrals in (3.42) 
analytically. However, in appendix B we expand the solution to the initial-value 
problems (3.39) and (3.40) in inverse powers of w and in appendix C we use this result 
to obtain an expansion for K ,  in ascending powers of k, r .  Relatively simple formulae 
are obtained for the case where k2 /k ,  and k3/k, are finite. A more complicated result 
is given for the case where k, r is arbitrary. 
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4. Supersonic turbulent flow around a corner 
With the recent advances in laser-Doppler velocimetry, it is now possible to measure 

turbulence velocity correlations and their spectra in supersonic flows. An interesting 
experiment might therefore consist of placing a wedge at an angle of attack to a 
turbulent supersonic stream and measuring the turbulence spectra in the centred 
expansion fan a t  the leading edge of the suction surface. The configuration is the 
same as the one shown in figure 2 (c). 

It should be possible to obtain a relatively homogeneous turbulence upstream of  
the wedge. The results obtained in the previous section can then be used to analyse 
the flow. The conditions for the validity of the basic model should be pretty much 
the same as those deduced by Hunt (1973) when the mean-flow Mach number is not 
too large. See Hunt (1977) for a discussion of this point. 

We assume that the turbulence upstream of the wedge is homogeneous and that 
its three-dimensional spectrum is known. The spectra and covariances of the tur- 
bulence in the expansion fan are related to this spectrum through the coupling 
coefficients deduced in the previous section. The relations are formally the same as 
those given by Hunt (1973). Thus the one-dimensional spectrum 

where (4.2) 

is the one-point turbulence velocity correlation tensor (and the overbar denotes a 
time average), is related to  the three-dimensional upstream turbulence spectrum 
@$y](k l ,  k,, k3) via the relation 

& , p ( X ,  7) = u,(x, t )  u,(x, t + 7) 

where the asterisk denotes the complex conjugate. 

we assume that the upstream turbulence is isotropic, so that (Batchelor 1953, p. 49) 
As is usual in problems involving the interaction of turbulence with solid obstacles, 

(4.4) 

where k = 1 kl and E ( k )  is the energy spectrum function. The one-dimensional spectrum 
for the axial velocity upstream of the wedge, which is given by 

@;.;A = (E(k)/4nk*)  ( k V j , ,  - kj kn) ,  

m 

urn, ,(x - aU, t )  u,, ,(x - W,(t + 7)) exp (ik, Um 7) d7,  (4.5) 

isrelated t o  E(k)  by (Batchelor 1953, p. 50) 

A convenient choice for @iyJ which is in good agreement with experiment is the von 
KQrmQn spectrum 

(4.7) 
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where c1 = g , l u ~ , , ,  g1 -" 0.1955, g2 2: 0.558, and 1 denotes the integral scale of the 
turbulence. Then it follows from (4.4) and (4.6) that  

- 

and that  O!$J = - u,,z(~-lU,t)u,,2(x-PU,(t+~))exp(iklU,7)d7 (4.9) 

(4.10) 

We can now calculate O , ,  a t  all points of the expansion fan by substituting (3.46) 
[with the M's defined by (3.48)-(3.52)] and (4.8) into (4.3). The coupling coefficients 
ultimately dependon K,, which must be evaluated from the contour integral (3.42). But 
the dominant contribution to the integral in (4.3) comes from the region where k = O(l- l ) ,  
when k,  1 = O( l), while @$:d will be small when k,  1 $ 1. Hence we ough6 to  be able t o  
use (C 5 )  a t  all points where r / l <  1.  Rut when this expansion is substituted into (4.3) 
via (3.46), (3.48) and (3.51) the resulting integral will diverge because @$:d does not 
approach zero at a fast enough rate as k,  -+ 00. This difficulty can be overcome by using 
(C 9) and (C lo), which do not require that k,r  be small. On the other hand the use of 
( C 5 )  will not lead to divergent integrals when the O(k;r2) terms are omitted. The 
results will then agree with those obtained from (C 9) and (C 10). 

Making the substitutions alluded to above and carrying out the integrations over 
k, and k,, we obtain 

@ ,  7 = @i;l) Q", 1 + @L;d Q:,2 + g r , r ( T )  (kr)'  + O(kZ, r 2 ) ,  (4.11) 

@o,e = O : ~ ~ Q & 1 , 1 + @ 6 ~ ~ Q ~ , z + ~ s , s ( ~ )  (k1r)*+O(k2,r2), (4.12) 

@ , e  = @\:){Qs,~ Qr, 1 + i ( rkd  [Qr, I - Qs, 1 dtl- i ( Q r ,  1 QQ% - Qe, 1 &h 
+ Qr, 2 PQ?', - Qs, 2 Pi:$ + Qr,l Pb:L - Q0,l @$)I) + @L:i[Qr, 2 Qs, 2 + ' ( r k ~ )  

x (Qr. 2 Qb:'z - Qs, 2 d:'2)1+ gr, S ( 7 )  (k1r) f  + O ( G  r2),  (4.13) 

where (4.14) 

(4.15) 

(4.16) 

(4.18) 

and f(q) is defined by (C 12). 

(4.19) 

(4.20) 
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FIGURE 4. Radial velocity spectra. (a )  M ,  = 1.2. (b )  M ,  = 2.0. 

The expressions for the g's are even more complicated than those for the q's and 
will therefore not be given here. It is worth noting however that the spectral density 
functions 0 ,  and 0 0 , e  vary with r like (kl r)% rather than having the (kl r)2 dependence 
that one might anticipate from the expansion (C 5). This behaviour results from the 
integration with respect to k, of the exponential factors that appear in (C9) and 
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FIGURE 5. Circumferential velocity spectra. (a) M ,  = 1.2. (b) M ,  = 2.0. 

(C 10). When they are expanded for small E,r to obtain ((35) the integrals in (4.3) 
become divergent. 

Figures 4 and 5 are plots of the one-dimensional autocorrelation spectra for the 
radial and circumferential velocities a t  several circumferential locations in the 
expansion fan, the dashed curves corresponding to  negative 8. They were calculated 
from (4.11) and (4.12) with the O((k,r)S)  termsomitted and are therefore independent 
of the radial co-ordinate r .  

It might a t  first appear that  the vanishing of the normal velocity on the surface of 
the wedge would require 0, to go to zero a t  r = 0. But the expansion fan meets the 
wedge at a single point which could just as well be associated with the unbounded 
upst,ream region as with the bounded region downstream of the expansion fan. Of 
course, the normal surface velocity must vanish in this downstream region and as 8 
varies through the expansion fan the radial surface velocity varies from its non-zero 
upstream value to a value that will allow the downstream surface velocity to vanish. 
But since the tangential velocity is continuous across the Mach line between the 
expansion fan and the downstream region it is easy to  see that the normal surface 
velocity could not in general be made to vanish in the latter region if the radial 
velocity were zero in the expansion fan. 
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Since the tangential velocities are always continuous across the Mach waves, the 
@r,r correlations at  the upstream edge of the expansion fan, i.e. at  8 = 8,, are identical 
with the r ,  r upstream autocorrelation spectra. On the other hand, the discontinuity in 
the circumferential velocities across the initial Mach wave causes e0, to differ from 
the corresponding upstream spectra. However, it turns out that they have the same 
shape as the upstream spectra and differ only by a multiplicative factor of y2 = & 
(for air). 

The curves show that the overall levels of the radial spectra always increase with 
increasing 8,-8, especially at  the lower frequencies. On the other hand, the low 
frequency portions of the circumferential velocity spectra first decrease and then 
increase with increasing 8, - 8. At the lower Mach numbers the initial decrease is 
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FIGURE 7. Imaginary part of radial-circumferential velocity 
cross-spectra. (a) M ,  = 1.2. (b )  M ,  = 2.0. 

compensated for by a corresponding increase in the high frequency portion of the 
spectrum, so that the net effect is a shift to higher frequencies followed by an overall 
increase in level. At the higher Mach numbers the final increase is compensated for by 
a decrease in the higher frequency components. The net effect is therefore an overall 
decrease in level with a shift to lower frequencies at the larger turning angles. 

At small values of 0 the circumferential spectra exhibit a slight hump near k,  1 = 0.7 
and, as can easily be anticipated from (4.7) and (4.10)-(4.12), the radial and circum- 
ferential spectra both decay like k,% for large k, 1. Even though the results for the two 
Mach numbers are plotted a t  different angular locations, it can be seen by inter- 
polation that the variation with Mach number is rather complex. 

are shown in figures 6-8. 
These results were calculated from (4.13) with O((k , r )8 )  terms omitted. The real and 

The radial-circumferential velocity cross-spectra 0 ,  
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FIGURE 8. Amplitude of radial-circumferential velocity cross-spectra 
at r/Z = 0.5. (a )  M ,  = 1.2. ( b )  M ,  = 2.0. 

imaginary parts are plotted in figures 6 and 7, respectively. The former are inde- 
pendent of radial position and the latter, which vary linearly with this quantity, are 
normalized by k, r .  

Since the incident turbulence is homogeneous and isotropic, the imaginary part of 
@ T , o  will vanish upstream of the expansion fan.? It will not, however, vanish along 

Or,, dk, = 0 in the upstream region, Or, itself will not vanish t Notice that, even though 

unless B = 0 or &T. 
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the leading Mach wave because of the discontinuity in the circumferential velocities 
across this line. 

It is worth noting that the real parts of the cross-spectra exhibit a hump that 
disappears a t  the larger values of 0 ,  - 6. On the other hand, the results show that the 
imaginary parts of the spectra can be an order of magnitude larger than the real parts 
as k, r approaches unity. 

Figure 8 is a plot of the magnitudes of the cross-spectra a t  r = 0.51. Its range is 
restricted to k, 1 < 1 in order to ensure that k, r remains less than unity. The curves 
therefore give no information about the high frequency fall-off of the spectra. The 
positive slope exhibited by the intermediate positive 8 curves is due to the k, r factor 
that  multiplies the large imaginary parts of the Or, 0. 

The author would like to thank Oliver Reese and Dr Lynn Albers for carrying out 
the numerical computations. Thanks are also due to Gita Lynn for checking the 
manuscript, to  Prof. J. E. Ffowcs Williams for his helpful suggestions, to Dr J. C. R .  
Hunt for sending me a preliminary copy of his paper and especially to his student 
Mr Paul Durbin for pointing out the transformation (2.17), which helped to  simplify 
the analysis. 

Appendix A 
I n  order to evaluate u(I) and the terms that enter the right side of (2.30) through 

u(I)we must calculate the drift function A defined by (2.22). But since equations (2.20) 
imply that dx/U, = d 9 / [ U [ ,  where Y denotes the arc length along a streamline, and 
since U, = U, in the region upstream of the expansion fan, this becomes 

where 8, = sin-l M z l  (A 2) 

is the upstream Mach angle and ro is the radius at which the streamline passing 
through ( r ,  0 )  enters the expansion fan, Since \r is constant along the streamlines, it 
follows from (3.11) that  

ro/r  = [cosy(e* - 6 ) / ~ o s y ( e * - 6 , ) ] ~ / ~ ~ ,  (A 3) 

which also shows that the polar co-ordinates (r,, 8,) of any point on the streamline that 
passes through (r, 6) are related by 

rs/r  = [COS y(6* - 6)/cosy(8* -6s)]1/~a. (A 4) 

Then since 

it follows that d Y  = - r s  
Y 

Also, since (3.1) and (3.2) show that 

tany(8*-6,q))a + i 1 4  cos y(e* - os), 
IUI = Qo [( 
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i t  follows from (3.11), (A 1) and (A 3)-(A5) that 

Upon taking V = tan y(0* -0,) as the variable of integration and using (3.7)) we find 
that the integral can be written as 

which can be expressed in terms of hypergeometric functions to obtain 

(A 7) 
where 

and F denotes t,he hypergeomet,ric function in t'he usual notat'ion. 
It followsfrom (3.1)) (3 .2))  (3.4), (3.10) and (A 6) that 

1 aA ( A / r )  U, - 1 _ _  - - 
r ae GO 

1 

and since (3.11) and (A 8) show that A cc r )  

Appendix B 
I n  this appendix we obtain an asymptotic solution to the initial-value problems 

(3.39) and (3.40) that  is valid for large values of eci and, consequently, of s. To this 
end, we write (3.39) in the form 

- + [ ij2 - 3y2( 1 - V2) 4yly + y 2  + (&O k3/k1)2?2 ] w2= 
Y 2 ( 1  - V 2 )  r" r" 

and treat the right side of this result as a known source term. The equation is then 
linear in W 2  and can be solved by standard methods. The solution that satisfies the 
boundary condition (3.40) is 

where IT = l/(2y2). For large values of w the integral can be neglected and the solution 
is given by 
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We can attempt to proceed iteratively by using this for the value of W in the integral. 
Making this substitution and expanding for large w, we obtain 

where 

Using this for the next iteration, we obtain after some simplification of the results 

where 

Appendix C 

fact (Carrier, Krook & Pearson 1966, p. 356) that, i fP ( s )  has the expansion 
In this appendix we expand (3.42) in a power series in r .  We do this by using the 

(C 1) 
1 "  

F ( s )  = - 2 B,s-", 
S n = l  

where the B, are independent of s, its Laplace transform will have the expansion 

a+im m '1 P(s)eSrds = n = l ? % .  4 . n .  (C 2 )  2ni a-im 

It can be seen from the expansion (B 2) for W that it will be more convenient to 
work in terms of the variable w/$( 1 - 72)4" than to work in terms of s. Thus, since 
(3.1), (3.21) and (3.30) imply that 

[s-i(% kJU,)I r = iw(ki r/qQo), 

it follows from (C 1) and (C 2 )  that if 

has the power-series expansion 

then K, will have the expansion 
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where the B, are functions of 7 and i j .  In order to obtain the expansion (C4) we 
must assume that k, and k, remain finite as w-fco. Then substituting (B 2) into (C 3) 
and expanding the result for large w ,  we find, after some rearrangement, that 

where 

We can evaluate the integral in (3.42) for large values of w even if k, /k ,  is allowed 
to be O(w).  We must then account for the poles in the integrand and the result is 
rather complicated. It can be written as 

- ( y214 + (k, Q,/k,) I,) P eihi d?] ) d i  + O( (k, r)3) ,  

iyJk, 
d i + O ( ( k , r ) 3 ) ,  (C 10) 

and in order to simplify the writing we have omitted the arguments of J(ijIq), A( f j J7 )  

The indicated integrations can be carried out  explicitly but for simplicity in writing 
they are left unintegrated. The result is valid for small values of k l r  and arbitrary 
values of k, r. 

and In.(? 1 7). 

16 FLM 89 
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ax 1 %  1 -= 

Appendix D 
In  order to obtain a relation between the upstream vorticity vector 

W,(X-?U,t )  = v xu,(x--PU,t) (D 1) 

and the curl of the first term on the right side of (2.33), we use the chain rule and the 
fact that the permutation tensor ei, j, k possesses the odd symmetry ei, j, k = -ei, k, to 
obtain 

axl/axl ax2/ax, ax,/ax1 

axl/ax2 ax,/ax2 ax3/ax2 

Then since e,,,, , e,., n, 112 = an, , 1 3 ~ ,  , - an, , S,,,, this becomes 

0"' = o,,(X-?U, t )  A,,$ 

where we have put 

ax ax, ax, ax, 
implies that = e ~ . s , t ~ ~ ~ *  

it follows that A ,  .I ax,/aX, = I axlax 1 si, 
and therefore that the matrix whose elements are the 
inverse of the matrix [aXr/axi]. On the other hand, it follows from the identity 

divided by )dX/axl is the 

ax, ax, aa, ax, 
ax, aai ax,aai 'vri' 

where the ai = X i  - Ji, U, t are essentially Lagrangian co-ordinates, that [axk/aai] is 
also the inverse of [aX,/ax,]. Then since this inverse is certainly unique, it follows that 

--=--= 

ax 
and therefore that 

Appendix E. List of commonly used symbols 

CO 

CP 
cu 
I 

speed of sound of mean flow 
specific heat at  constant pressure 
specific heat at  constant volume 
unit vector in x1 co-ordinate direction 



Potential flows round arbitrary obstacles 467 

Superscripts : 

prime 

Subscripts: 

0 
a3 

wavenumber vector 
unit normal to surface of obstacle 
pressure 
pressure fluctuation 
mean pressure 
entropy fluctuation 
imposed upstream entropy distortion 
entropy 
time 
velocity perturbation 
potential flow velocity (steady) 
constant mean-flow velocity a t  upstream infinity 
upstream distortion velocity 
incident distortion velocity given by (2.33) 
fluid velocity 
position vector 
vector composed of integrals of equations for 
streamlines 
integrals of  the system (2.20) characterized by (2.21) 
defined by (3.7) 
drift function defined by (2.22) 
specific-heat ratio 
density 
mean-flow density 
density fluctuation 
mean density a t  upstream infinity 

perturbation potential 
velocity potential for mean potential flow 
stream function for mean potential flow 
unsteady vorticity vector V x u 

V 2 Y 2  

fluctuating quantities 

mean-flow conditions 
upstream conditions 
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